
CHOWN 1
ID: 709-BSI | Version: 4 | Date: 5/16/08 2:39:15 PM

CHOWN
Vulnerable to TOCTOU issues

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-03-19

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 10528 bytes

Attack Category • Path spoofing or confusion problem

Vulnerability Category • TOCTOU - Time of Check, Time of Use

• Privilege escalation problem

Software Context • File Management

Location • unistd.h

Description The chown() function sets the owner ID and group
ID of the file specified by path or referenced
by the open file descriptor fildes to owner and group
respectively. If owner or group is specified
as -1, chown() does not change the corresponding ID
of the file.

The lchown() function sets the owner ID and group
ID of the named file in the same manner as
chown(), unless the named file is a symbolic link. In
this case, lchown() changes the ownership of the
symbolic link file itself, while chown() changes the
ownership of the file or directory to which the
symbolic link refers.

The fchownat() function sets the owner ID and group
ID of the named file in the same manner as
chown(). If, however, the path argument is relative,
the path is resolved relative to the fildes argument
rather than the current working directory. If the
fildes argument has the special value
FDCWD, the path path resolution reverts back to
current working directory relative. If the flag
argument is set to SYMLNK, the function behaves
like lchown() with respect to symbolic links. If the
path argument is absolute, the fildes argument is
ignored. If the path argument is a NULL pointer,
the function behaves like fchown().

If chown(), lchown(), fchown(), or fchownat() is
invoked by a process other than superuser, the
set-user-ID and set-group-ID bits of the file mode,
S_ISUID and S_ISGID respectively, are cleared.

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html


CHOWN 2
ID: 709-BSI | Version: 4 | Date: 5/16/08 2:39:15 PM

chown() is vulnerable to TOCTOU attacks. A call to
this function should be flagged if a check function
precedes it.

APIs FunctionName Comments

chgrp use; deprecated or
extinct in most cases

chown use

lchown use

fchown

fchownat

Method of Attack The key issue with respect to TOCTOU
vulnerabilities is that programs make assumptions
about atomicity of actions. It is assumed that
checking the state or identity of a targeted resource
followed by an action on that resource is all one
action. In reality, there is a period of time between
the check and the use that allows either an attacker to
intentionally or another interleaved process or thread
to unintentionally change the state of the targeted
resource and yield unexpected and undesired results.

The chown() call is a use-category call, which when
preceded by a check-category call can be indicative
of a TOCTOU vulnerability.

A TOCTOU attack in regards to chown() can occur
when

a. There is a check for permissions on a file

b. Permissions on the file are changed based on the
permissions state returned from the check

Between a and b, an attacker could, for example,
replace the target file with a link to an attack file,
resulting in an unintended file being chown'ed and,
most likely, a problem with privilege escalation.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Generally
applies to any
chown().

Translate
chown() into
function(s)
using file
descriptors;
fchown().

Effective.

Generally
applies to any
chown().

The most basic
advice for
TOCTOU
vulnerabilities
is to not

Does not
resolve the
underlying
vulnerability
but limits the



CHOWN 3
ID: 709-BSI | Version: 4 | Date: 5/16/08 2:39:15 PM

perform a check
before the use.
This does not
resolve the
underlying
issue of the
execution of
a function on
a resource
whose state and
identity cannot
be assured, but
it does help
to limit the
false sense of
security given
by the check.

false sense of
security given
by the check.

Generally
applies to any
chown().

Limit the
interleaving
of operations
on files from
multiple
processes.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applies to any
chown().

Limit the spread
of time (cycles)
between the
check and use
of a resource.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applies to any
chown().

Recheck the
resource after
the use call
to verify that
the action
was taken
appropriately.

Effective in
some cases.

Signature Details int chown(const char *path, uid_t owner, gid_t
group);
int lchown(const char *path, uid_t owner, gid_t
group);
int fchown(int fildes, uid_t owner, gid_t group);
int fchownat(int fildes, const char *path, uid_t
owner, gid_t group, int flag);

Examples of Incorrect Code /* Original UNIX V7 mkdir
implementation - Scroll down to
chown call */



CHOWN 4
ID: 709-BSI | Version: 4 | Date: 5/16/08 2:39:15 PM

mkdir(d)
char *d;
{
char pname[128], dname[128];
register i, slash = 0;

pname[0] = '\0';
for(i = 0; d[i]; ++i)
if(d[i] == '/')
slash = i + 1;
if(slash)
strncpy(pname, d, slash);
strcpy(pname+slash, ".");
if (access(pname, 02)) {
fprintf(stderr,"mkdir: cannot
access %s\n", pname);
++Errors;
return;
}
if ((mknod(d, 040777, 0)) < 0) {
fprintf(stderr,"mkdir: cannot
make directory %s\n", d);
++Errors;
return;
}

/* HERE IS THE TOCTOU problem 'd'
is vulnerable */
chown(d, getuid(), getgid());
strcpy(dname, d);
strcat(dname, "/.");
if((link(d, dname)) < 0) {
fprintf(stderr, "mkdir: cannot
link %s\n", dname);
unlink(d);
++Errors;
return;
}
strcat(dname, ".");
if((link(pname, dname)) < 0) {
fprintf(stderr, "mkdir: cannot
link %s\n",dname);
dname[strlen(dname)] = '\0';
unlink(dname);
unlink(d);
++Errors;
}
}

Examples of Corrected Code struct passwd *pwd;
struct group *grp;
int fildes;
...
fildes = open("/home/cnd/mod1",
O_RDWR);



CHOWN 5
ID: 709-BSI | Version: 4 | Date: 5/16/08 2:39:15 PM

pwd = getpwnam("jones");
grp = getgrnam("cnd");
fchown(fildes, pwd->pw_uid, grp-
>gr_gid);

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X, ch 9;

• man chown()

• http://www.kernelthread.com/publications/
security/types.html

• http://www.opengroup.org/
onlinepubs/009695399/functions/fchown.html

Recommended Resource

Discriminant Set Operating Systems • UNIX

• Windows

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://www.kernelthread.com/publications/security/types.html
http://www.kernelthread.com/publications/security/types.html
http://www.opengroup.org/onlinepubs/009695399/functions/fchown.html
http://www.opengroup.org/onlinepubs/009695399/functions/fchown.html
mailto:copyright@cigital.com

